Application of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation
Authors
Abstract:
Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological phenomena more and more. Therefore, in this study, the Gene Expression Programming (GEP) and Support Vector Regression (SVR) models were used to model monthly precipitation of Nahavand City. In this study, precipitation, temperature, and relative humidity data were used in a 32-year period (from 1983 to 2014). The results showed that the same and good performance of both models (R2= 0.92), but according to different evaluation criteria, GEP model showed a little better performance (RMSE= 0.0478 and 0.0486), while the running GEP model is so easier than the SVM model. Totally, it can be said that GEP model had been suitable for modeling monthly precipitation of Varayeneh station in Nahavand City. Finally, the monthly precipitation was predicted the GEP which showed a decrease in precipitation in compared with previous months.
similar resources
Monthly rainfall Forecasting using genetic programming and support vector machine
Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...
full textSimulation and prediction of scour whole dimensions downstream of siphon overflow using support vector machine and Gene expression programming algorithms
Background and Objectives: The purpose of this study is to simulate and predict the dimensions of the scour cavity downstream of the siphon overflow using the SVM model and compare it with other numerical methods. The use of the SVM algorithm as a meta-heuristic system in simulating complex processes in which the dependent variable is a function of several independent variables has been widely ...
full textconstruction and validation of translation metacognitive strategy questionnaire and its application to translation quality
like any other learning activity, translation is a problem solving activity which involves executing parallel cognitive processes. the ability to think about these higher processes, plan, organize, monitor and evaluate the most influential executive cognitive processes is what flavell (1975) called “metacognition” which encompasses raising awareness of mental processes as well as using effectiv...
Application of Gene Expression Programming to water dissolved oxygen concentration prediction
This research based on record and collected data from four stations at Eymir Lake, Turkey, which are monitored daily in seven months. Water quality monitoring using former methods are time-needed and expensive, while the application of gene expression programming is more understandable, rapid, and reliable which is used in this article to provide a prediction for dissolved oxygen. The concentra...
full textSupport vector regression for prediction of gas reservoirs permeability
Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...
full textSupport Vector Regression for Software Reliability Growth Modeling and Prediction
In this work, we propose to apply support vector regression (SVR) to build software reliability growth model (SRGM). SRGM is an important aspect in software reliability engineering. Software reliability is the probability that a given software will be functioning without failure during a specified period of time in a specified environment. In order to obtain the better performance of SRGM, prac...
full textMy Resources
Journal title
volume 18 issue 50
pages 91- 103
publication date 2018-06
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023